Welcome

My Blog List

Another Templates

Our Blog

Teori medan kristal

Posted on Sabtu, 05 November 2011 Diposting oleh Teknik industri

Teori medan kristal (Bahasa Inggris: Crystal Field Theory), disingkat CFT, adalah sebuah model yang menjelaskan struktur elektronik dari senyawa logam transisi yang semuanya dikategorikan sebagai kompleks koordinasi. CFT berhasil menjelaskan beberapa sifat-sifat magnetik, warna, entalpi hidrasi, dan struktur spinel senyawa kompleks dari logam transisi, namun ia tidak ditujukan untuk menjelaskan ikatan kimia. CFT dikembangkan oleh fisikawan yang bernama Hans Bethe dan John Hasbrouck van Vleck pada tahun 1930-an. CFT pada akhirnya digabungkan dengan teori orbital molekul, membentuk teori medan ligan yang lebih akurat dan menjelaskan proses ikatan kimia pada senyawa kompleks logam transisi.
Tinjauan analisis teori medan kristal
Menurut CFT, interaksi antara logam transisi dan ligan diakibatkan oleh tarikan antara kation logam yang bermuatan positif dan elektron bukan-ikatan ligan yang bermuatan negatif. Teori ini dikembangkan menurut perubahan energi dari lima degenerat orbital-d ketika dikelilingi oleh ligan-ligan. Ketika ligan mendekati ion logam, elektron dari ligan akan berdekatan dengan beberapa orbital-d logam dan menjauhi yang lainnya, menyebabkan hilangnya kedegeneratan (degeneracy). Elektron dari orbital-d dan dari ligan akan saling tolak menolak. Oleh karena itu, elektron-d yang berdekatan dengan ligan akan memiliki energi yang lebih besar dari yang berjauhan dengan ligan, menyebabkan pemisahan energi orbital-d. Pemisahan ini dipengaruhi oleh faktor-faktor berikut:
sifat-sifat ion logam.
keadaaan oksidasi logam. 
Keadaan oksidasi yang lebih besar menyebabkan pemisahan yang lebih besar.
susunan ligan disekitar ion logam.
sifat-sifat ligan yang mengelilingi ion logam. 


Efek ligan yang lebih kuat akan menyebabkan perbedaan energi yang lebih besar antara orbital 3d yang berenergi tinggi dengan yang berenergi rendah.
Struktur kompleks yang paling umum adalah oktahedon; dalam struktur ini, enam ligan membentuk oktahedron di sekitar ion logam. Pada simetri oktahedron, orbital-d akan berpisah menjadi dua kelompok energi dengan perbedaan energi Δoct. Orbital dxy, dxz dan dyz akan memiliki energi yang lebih rendah daripada orbital dz2 and dx2-y2. Hal ini dikarenakan orbital dxy, dxz dan dyz memiliki posisi yang lebih jauh dari ligan-ligan, sehingga mendapatkan gaya tolak yang lebih kecil. Kompleks tetrahedron juga merupakan struktur yang umum; dalam struktur ini, empat ligan membentuk tetrahedron disekitar ion logam. Dalam pemisahan medan kristal tetrahedron, orbital-d kembail berpisah menjadi dua kelompok dengan perbedaan energi Δtet. Orbital dz2 dan dx2-y2 akan memiliki energi orbital yang lebih rendah, dan dxy, dxz dan dyz akan memiliki energi orbital yang lebih tinggi. Hal bertolak belakang dengan struktur oktahedron. Selain itu, dikarenakan elektron ligan pada simetri tetrahedal tidaklah berorientasi pada orbital-orbital-d, pemisahan energi akan lebih kecil daripada pemisahan energi oktaherdal. Struktur geometri datar persegi juga dapat dideskripsikan oleh CFT.
Besarnya perbedaan energi Δ antara dua kelompok orbital tergantung pada beberapa faktor, seperti sifat-sifat ligan dan struktur geometri kompleks. Beberapa ligan selalu menghasilkan nilai Δ yang kecil, sedangkan beberapa lainnya akan selalu menghasilkan nilai yang lebih besar. Alasan di balik perbedaan ini dapat dijelaskan dengan teori ligan medan. Deret spektrokimia adalah daftar-daftar ligan yang disusun berdasarkan perbedaan energi Δ yang dihasilkan (disusun dari Δ yang kecil ke Δ yang besar):
I− < Br− < S2− < SCN− < Cl− < NO3− < N3− < F− < OH− < C2O42− < H2O < NCS− < CH3CN < py < NH3 < en < 2,2′-bipiridina < phen < NO2− < PPh3 < CN− < CO
Keadaan oksidasi logam juga mempengaruhi besarnya Δ antara aras energi (energy level) yang tinggi dan rendah. Semakin tinggi keadaan oksidasi logam, semakin tinggi pula Δ. Kompleks V3+ akan memiliki Δ yang lebih besar dari kompleks V2+. Hal ini dikarenakan perbedaan rapatan muatan yang mengijinkan ligan lebih dekat dengan ion V3+ daripada ion V2+. Jarak antar ligan dan ion logam yang lebih kecil akan menyebabkan nilai Δ yang lebih besar karena elektron logam dan ligan lebih berdekatan, sehingga gaya tolak menolak menjadi lebih besar.
Spin-tinggi dan spin-rendah
diagram kristal [Fe(NO2)6]3-
Ligan-ligan yang menyebabkan Δ pemisahan orbital-d yang lebih besar disebut sebagai ligan-ligan medan kuat, seperti CN− dan CO. Senyawa kompleks yang memiliki ligan medan kuat tidak akan menempatkan elektron-elektronnya ke orbital yang berenergi tinggi. Hal ini sesuai dengan asas Aufbau. Kompleks yang demikian disebut sebagai “spin-rendah”. Sebagai contoh, NO2− yang merupakan ligan medan kuat, menghasilkan Δ yang besar. Ion oktahedron [Fe(NO2)6]3− yang memiliki 5 electron-d akan memiliki diagram pemisahan oktahedron yang kelima elektronnya berada di aras t2g.
diagram medan kristal [FeBr6]3-
Sebaliknya, ligan-ligan (seperti I− dan Br−) yang menghasilkan Δ orbital-d yang kecil disebut ligan medan lemah. Dalam kasus ini, adalah lebih mudah menempatkan elektron di aras energi orbital yang lebih tinggi daripada menempatkan dua elektron pada orbital yang sama. Ini dikarenakan gaya tolak antar dua elektron lebih besar daripada Δ. Oleh karena itu, masing-masing elektron akan ditempatkan pada setiap orbital-d terlebih dahulu sebelum dipasangkan. Hal ini sesuai dengan kaidah Hund dan menghasilan kompleks “spin-tinggi”. Sebagai contoh, Br− adalah ligan medan lemah dan menghasilkan Δoct yang lebih kecil. Makan, ion [FeBr6]3−, yang juga memiliki 5 elektron-d, akan memiliki diagaram pemisahan elektron yang kelima orbitalnya dipenuhi secara tunggal.
Agar pemisahan spin rendah terjadi, energi yang dibutuhkan untuk menempatkan elektron ke orbital yang sudah berlektron tunggal harus lebih kecil dari energi yang dibutuhkan untuk menempatkan elektron tambahan ke orbital eg sebesar Δ. Jika energi yang diperlukan untuk memasangkan dua elektron lebih besar dari menempatkan satu elektron di orbital eg, pemisahan spin tinggi akan terjadi.
Energi pemisahan medan kristal untuk kompleks logam tetrahedron (empat ligan), Δtet, kira-kira sama dengan 4/9Δoct. Oleh karena itu, energi yang diperlukan untuk memasangkan dua elektron biasanya lebih besar dari energi yang diperlukan untuk menempatkan elektron di orbital yang berenergi lebih tinggi. Sehingga, kompleks tetrahedron biasanya merupakan spin-tinggi.
Diagram pemisahan ini dapat membantu kita dalam memprediksikan sifat-sifat magnetik dari senyawa koordinasi. Senyawa yang memiliki elektron yang takberpasangan pada diagram pemisahannya bersifat paramagnetik dan akan ditarik oleh medan magnet. Sedangkan senyawa yang tidak memiliki elektron takberpasangan pada diagram pemisahannya bersifat diamagnetik dan akan ditolak oleh medan magnet

Reaksi Pada Senyawa Kompleks

Posted on Diposting oleh Teknik industri

Reaksi substitusi adalah reaksi di mana 1 arau lebih ligan dalam suatu kompleks digantikan oleh ligan lain. Karena ligan memiliki pasangan elektron bebas sehingga bersifat nukleofilik (menyukai inti atom), maka reaksi tersebut juga dikenal sebagai reaksi substitusi nukeofilik (SN).
Berdasarkan mekanismenya reaksi substitusi dapat dibedakan menjadi :

  1. SN1 (lim)
  2. SN1
  3. SN2
  4. SN2 (lim)
  1. SN1 (lim) : substitusi nukleofilik orde-1 ekstrim
Mekanisme reaksi diawali dengan pemutusan salah satu ligan, ini berlangsung lambat sehingga merupakan tahap penentu reaksi (rate determining step). Dengan demikian konstanta laju reaksi (k) hanya dipengaruhi oleh jenis kompleks dan sama sekali tidak dipengaruhi oleh jenis ligan pengganti.
Contoh :
[Co(CN-)5(H2O)]2- +    Y- ↔    [Co(CN-)5(Y-)]2- +    H2O
Diperoleh data harga k untuk berbagai ligan pengganti (Y-) sebagai berikut :
ligan pengganti (Y-) k (detik-1)
Br- I-
SCN-
N3-
H2O-
1,6 . 10-3 1,6 . 10-3
1,6 . 10-3
1,6 . 10-3
1,6 . 10-3
Mekanisme reaksi :
[Co(CN-)5(H2O)]2- ↔    [Co(CN-)5]2- +       H2O                (lambat)
[Co(CN-)5]2- +    Y- ↔    [Co(CN-)5(Y-)]2- (cepat)
Persamaan laju reaksi :  r = k ([Co(CN-)5(H2O)]2-)


  1. SN1 : substitusi nukleofilik orde-1
Pada tahap penentu laju reaksi terjadi pemutusan maupun pembentukan ikatan. Pada saat ikatan antara ion pusat dengan ligan terganti sudah hampir putus sudah terjadi pembentukan ikatan (walaupun sangat lemah) antara ion pusat dengan ligan pengganti. Dengan demikian tahap penentu utama laju reaksi adalah pemutusan ikatan antara ion pusat dengan ligan terganti dan hanya sedikit dipengaruhi oleh pembentukan ikatan antara ion pusat dengan ligan pengganti. Harga k terutama ditentukan oleh jenis ion kompleks, namun jika jenis ligan pengganti divariasi ternyata memberikan sedikit pengaruh seperti tersaji pada tabel berikut :
ligan pengganti (Y-) k
[Ni(H2O)6]2+ [Co(H2O)6]2+
SO42- Glisin
Diglisin
imidazol
1,5 0,9
1,2
1,6
2 2,6
2,6
4,4
  1. SN2 : substitusi nukleofilik orde-2
Pada tahap penentu laju reaksi terjadi pemutusan maupun pembentukan ikatan. Pada saat ikatan antara ion pusat dengan ligan terganti baru mulai melemah sudah terjadi pembentukan ikatan yang sudah hampir sempurna antara ion pusat dengan ligan pengganti. Dengan demikian tahap penentu utama laju reaksi adalah pembentukan ikatan antara ion pusat dengan ligan pengganti dan hanya sedikit dipengaruhi oleh pemutusan ikatan antara ion pusat dengan ligan terganti.
  1. SN2-lim : substitusi nukleofilik orde-2 ekstrim
Mekanisme reaksi diawali dengan pembentukan ikatan yang sempurna antara ion pusat dengan ligan pengganti, dilanjutkan dengan pemutusan ligan terganti. Dengan demikian zantara (intermediate) merupakan kompleks koordinasi 5. Konstanta laju reaksi (k) dipengaruhi baik oleh jenis kompleks maupun oleh jenis ligan pengganti.
Contoh :
[PtCl4]2- +       X- ↔          [PtCl3X-]2- +   Cl-
Mekanisme :
[PtCl4]2- +       X- ↔          [PtCl4X-]2- (lambat)
[PtCl4X-]2- ↔         [PtCl3X-]2- +     Cl- (cepat)
Persamaan laju reaksi :  r = k ([PtCl4]2-)2(X-)
Untuk reaksi SN2 (lim) tersebut dapat disusun urutan laju reaksi untuk bebagai ligan pengganti (Y-), dimana perbandingan laju reaksi bilamana digunakan ligan PR3 :  OR- =  107 : 1
Reaksi substitusi pada kompleks oktahedral pada umunya berlangsung melalui mekanisme  SN1 dan SN1-lim (mekanisme disosiatif), sedang substitusi pada kompleks bujursangkar  pada umunya berlangsung melalui mekanisme SN2 dan SN2-lim (asosiatif). Hal ini dapat dipahami mengingat kompleks koordinat 6 sudah cukup crowded dan tidak ada tempat lagi bagi ligan pengganti untuk bergabung sehingga dihasilkan kompleks koordinat 7. Adapun untuk kompleks bujursangkar masih tersedia ruangan yang cukup longgar bagi ligan pengganti untuk bergabung membentuk intermediate berupa kompleks koordinat 5.
2 Reaksi Redoks
Reaksi redoks (reduksi-oksidasi) adalah reaksi dimana terjadi perubahan btlangan oksidasi pada ion-ion pusatya. Berdasarkan mekanismenya dapat dibedakan menjadi 2, yaitu mekanisme bola dalam (inner sphere mechanism) dan mekanisme bola luar (outer sphere mechanism).
a. Mekanisme bola dalam (inner sphere mechanism)
Mekanisme bola dalam juga disebut mekanisme perpindahan ligan karena perpindahan elektron dalam reaksi ini juga disertai dengan perpindahan ligan. Selain itu juga dikenal sebagai mekanisme jembatan ligan karena kompleks teraktivasinya merupakan kompleks dimana ligan yang akan berpindah menjembatani dua ion pusat reaktan. Mekanisme ini terjadi antara dua kompleks di mana kompleks yang 1 innert dan yang lain labil.
Contoh :
[Co(NH3)5Cl]2+ +  [Cr(H2O)6]2+ + 5H3O+ ↔  [Co(H2O)6]2+ +   [CrCl(H2O)5]2+ + 5NH4+
Dalam reaksi tersebut tejadi perpindahan elektron dari Cr(II) ke Co(III)  disertai dengan perpindahan ligan Cl- dari Co(III)   ke Cr(II). Jika dalam reaksi digunakan [Co(NH3)5*Cl]2+ dan juga ditambahkan Cl- ke dalam larutan tenyata yang dihasilkan adalah [Cr*Cl(H2O)5]2+ dan bukan [CrCl(H2O)5]2+ , artinya Cl- yang terikat pada Cr adalah Cl- yang semula terikat oleh Co. Untuk menjelaskan hal itu, H.Taube mengusulkan bahwa kompleks teraktivasi merupakan kompleks dimana ligan yang akan berpindah menjembatani dua ion pusat reaktan, yaitu  [(NH3)5Co-Cl-Cr(H2O)5]4+. Jadi Cl berfungsi sebagai “kabel” untuk perpindahan elektron dari Cr(II) ke Co(III) sehingga masing-masing berubah menjadi Cr(III) ke Co(II). Setelah terjadi perpindahan elektron jari-jari Cr mengecil (karena muatan positif bertambah), sebaliknya Co membesar (karena muatan positif berkurang). Akibatnya daya tarik  Cr(III) terhadap ligan Cl- lebih besar dibanding daya tarik  Co(II) terhadap ligan Cl- dan setelah ikatan putus Cl- terikat oleh Cr(III).
Mekanisme :
[Co(NH3)5Cl]2+ +  [Cr(H2O)6]2+ ↔    [(NH3)5Co-Cl-Cr(H2O)5]4+ +    H2O
[(NH3)5Co-Cl- Cr(H2O)5]4+ ↔    [(NH3)5Co]2+ +     [Cl-Cr(H2O)5]2+
[(NH3)5Co]2+ +      5H3O+ +    H2O    ↔     [Co(H2O)6]2+ +    5NH4+
Fakta lain yang mendukung usulan Taube tersebut adalah bahwa jika digunakan ligan yang lebih konduktif  (lebih polar atau memiliki ikatan rangkap, ternyata reaksi berlangsung lebih cepat :
VI- >  VBr- >  VCl-
V-CH=CH-CH-COO- >  V-CH2-CH2-CH2-COO-
b. Mekanisme bola luar (outer sphere mechanism)
Dalam mekanisme ini hanya terjadi perpindahan electron dan tidak disertai dengan perpindahan ligan, sehingga juga dikenal sebagai mekanisme perpindahan electron. Mekanisme ini terjadi dalam reaksi antara 2 kompleks yang inert.
Contoh :
[*Fe(CN)6]4- +    [Fe(CN)6]3- →      [*Fe(CN)6]3- +     [Fe(CN)6]4-
Karena kedua kompleks bersifat innert, maka pelepasan berlangsung lambat. Adapun elektron, dapat berpindah dengan sangat cepat (jauh lebih cepat dari perpindahan ligan) ; oleh karena itu tidak mugkin terjadi kompleks teraktivasi jembatan ligan. Dalam hal ini akan ditinjau 2 kemungkinan mekanisme :
  • Kedua kompleks saling mendekat kemudian diikuti oleh perpindahan elektron dari Fe(III) ke *Fe(II). Jika hal ini terjadi maka akan tejadi kompleks *Fe(II) dengan ikatan logam-ligan yang perlalu pendek, dan kompleks Fe(III) dengan ikatan logam-ligan yang perlalu panjang. Kedua produk tersebut memiliki tingkat energi yang tinggi (tak stabil), sehinga diduga tidak tejadi.
  • Kedua kompleks terlebih dahulu membentuk ompleks yangh simetris. Ikatan logam-ligan pada *Fe(II) agak mengkerut sedang pada Fe(III) agak mulur. Hal ini juga memerlukan energi tetapi relatif sedikit. Setelah kedua kompleks bergeometri sama (keadaan teaktivasi elektron berrpindah dari Fe(III) ke *Fe(II) melalui ligan-ligan kedua kompleks yang saling berdekatan. Dugaan ini didukung oleh fakta bahwa jika perbedaan panjang ikatan logam-ligan dalam kedua kompleks semakin besar tenyata ternyata reaksi berlangsung semakin lambat.
Pereaksi K (pada suhu 25 oC)
[*Mn(CN)6]4- +    [Fe(CN)6]4- [*Fe(CN)6]3- +    [Fe(CN)6]4-
[*Co(NH3)6]2+ +    [Co(NH3)6]3+
> 106 mol detik-1 ≈ 105 mol detik-1
≈ 104 mol detik-1

V.3  Pengaruh Trans

Dalam reaksi substitusi pada kompleks platinum teramati bahwa laju reaksi sangat dipengaruhi oleh sifat gugus yang berada pada posisi trans dari ligan terganti. Ligan-ligan dapat diurutkan berdasarkan ”pengaruh trans”, yaitu kemampuan melabilkan ligan lain yang berada pada posisi trans untuk siap digantikan. Dalam daftar berikut ligan diurutkan mulai dari yang memiliki  ”pengaruh trans” paling kuat, : CO, CN-, C2H4 > PR3, H-, RO > CH3-, SC(NH2)2 > C6H5, NO2-, I-, SCN- > Br- > Cl- > NH3, Py, RNH2, F- > OH- > H2O.
Contoh :
Cl                      Cl                                Cl                    Cl                            Cl                    Cl
Cl                     Cl                               NH3 Cl                             NH3 NH3
Cis
Penjelasan : –   Pada penambahan pertama, NH3 menggantikan Cl di sembarang posisi
- Pada penambahan  kedua, karena Cl memiliki pengaruh trans lebih kuat dibanding NH3 maka salah satu ligan (selain NH3) yang berada pada posisi trans terhadap Cl digantikan oleh NH3, sehingga diperoleh kompleks cis.
NH3 NH3 NH3 NH3 NH3 Cl
NH3 NH3 Cl                 NH3 Cl                  NH3
Trans
Penjelasan : -   Pada penambahan pertama, Cl menggantikan NH3 di sembarang posisi
-  Pada penambahan  kedua, karena Cl memiliki pengaruh trans lebih kuat dibanding NH3 maka salah satu ligan yang berada pada posisi trans terhadap Cl digantikan oleh NH3, sehingga diperoleh kompleks trans
WARNA WARNA KOMPLEMEN
Hijau kekuningan Hijau
Biru kehijauan
Hijau kebiruan
Biru
Biru keunguan
Ungu kebiruan Ungu kemerahan
Merah
Oranye
Kuning keoranyean
Kuning

Lantanida dan Altinida

Posted on Diposting oleh Teknik industri


Lantanoid dan aktinoid adalah unsur-unsur transisi blok f, sifat-sifatya berbeda secara signifikan dengan unsur-unsur transisi blok d. Unsur-unsur ini ditempatkan terpisah dalam tabel periodik untuk menunjukkan bahwa keperiodikan struktur elektroniknya berbeda dengan umumnya unsur lain. Walaupun lantanoid disebut unsur tanah jarang, kelimpahannya di kerak bumi tidak sedikit dan kimia penggunaan sifat-sifat lantanoid yang unik sangat mungkin akan berkembang cepat dalam waktu yang tidak terlalu lama. Aktinoid sangat erat dengan kimia dan energi nuklir. Karena jumlah unsur superberat “yang disintesis” dalam akselerator sangat kecil, unsur-unsur ini sangat tidak signifikan dalam pandangan kimia terapan.
Lantanoid
Lima belas unsur dari lantanum, La (4f), sampai lutetium, Lu (4f4), merupakan lantanoid. Ln biasanya digunaan sebagai simbol umum unsur-unsur lantanoid. Walaupun lantanoid, bersama dengan skandium (Sc), dan Itrium (Y), sering disebut unsur-unsur tanah jarang, unsur-unsur ini relatif melimpah di kerak bumi. Kecuali prometium (Pm), yang membentuk isotop stabil, bahkan yang paling kecil kelimpahannya tulium (Tm), dan lutetium (Lu), kelimpahannya sama dengan kelimpahan iodin. Karena lantanoid memiliki sifat yang sangat mirip dan sukar dipisahkan satu sama lain, di waktu yang lalu unsur-unsur ini belum banyak dimanfaatkan dalam riset dasar dan terapan, jadi nama tanah jarang berasal dari fakta ini. Karena adanya metoda ekstraksi pelarut cair-cair dengan menggunakan tributilfosfin oksida sejak tahun 1960-an, unsur-unsur lantanoid menjadi mudah didapat dan mulai banyak dimanfaatkan tidak hanya untuk riset dasar tetapi juga dalam material seperti dalam paduan logam, katalis, laser, tabung sinar katoda, dsb.


Karena entalpi ionisasi tiga tahap unsur lantanoid cukup rendah, unsur-unsur ini membentuk kation trivalen. Sebagian besar senyawa lantanoid kecuali senyawa Ce4+(4f0), Eu2+(4f7) dan Yb2+(4f14) biasanya lantanoidnya berupa ion Ln3+. Ln3+ adalah asam keras, dan karena elektron f terpendam jauh dan tidak digunakan dalam ikatan, elektron-elektron f ini hampir tidak dipengaruhi ligan. Ada kecenderungan jari-jari atom dan ion lantanoid menurun dengan kenaikan nomor atom, dan fenomena ini disebut kontraksi lantanida. Kontraksi ini disebabkan kecilnya efek perisai elektron 4f, yang menyebabkan inti atom menarik elektron dengan kuat dengan meningkatnya nomor atom.
Kompleks logam lantanoid biasanya berkoordinasi antara 6-12 dan khususnya banyak yang berkoordinasi 8 dan 9. Senyawa organologam dengan ligan siklopentadienil jenis Cp3Ln atau Cl2LnX juga dikenal, semua senyawa ini sangat reaktif pada oksigen atau air.
Lantanida adalah kelompok unsur kimia yang terdiri dari 15 unsur, mulai lantanum (La) sampai lutetium (Lu) pada tabel periodik, dengan nomor atom 57 sampai 71. Semua lantanida, kecuali lutetium, adalah unsur blok-f yang berarti bahwa elektronnya terisi sampai orbit 4f. Golongan ini diberi nama berdasarkan lantanum.
Contohnya :
Neodimium (Nd)
Neodinium adalah suatu unsur kimia dalam tabel periodik yang memiliki lambang Nd dan nomor atom 60. Unsur lantanida ini digunakan antara lain untuk bahan pewarna kaca.
Aktinida
Aktinida adalah kelompok unsur kimia yang mencakup 15 unsur antara aktinium dan lawrensium pada tabel periodik, dengan nomor atom antara 89 sampai dengan 103. Seri ini dinamakan menurut unsur aktinium. Semua aktinida, kecuali lawrensium merupakan unsur blok-f. Unsur-unsur kelompok aktinida adalah radioaktif, dengan hanya aktinium, torium, dan uranium yang secara alami ditemukan di kulit bumi.
Contohnya :
Berkelium (Bk)
Berkelium adalah suatu unsur kimia dalam tabel periodik yang memiliki lambang Bk dan nomor atom 97. Unsur sintetik logam radioaktif anggota deret kimia aktinida ini pertama kali disintesis dengan menembakkan amerisium dengan partikel alfa (ion helium) dan diberi nama dari nama Berkeley, California dan Universitas California, Berkeley. Berkelium merupakan unsur transuranium kelima yang berhasil disintesis.
 Semua lantanida, kecuali lutetium, adalah unsur blok-f yang berarti bahwa elektronnya terisi sampai orbit 4f. Kofigurasi electron sub kulit terluar dari lantanida adalah 4f1-14, 5s25p2, 6s2. Dalam bahasa yunani, lantanida mempunyai arti “saya bersembunyi” hal ini disebabkan unsur-unsur yang termasuk lantanida ditemukan tidak tersendiri melainkan melekat atau bersembunyi pada unsur lain. Misalnya Serium terdapat di kerak bumi, Neodium terdapat pada bongkahan emas, dan tulium terdapat pada yodium.

Secara kimiawi, jari-jari atom unsur-unsur lantanida dari no 57sampai dengan 71 mengalami penurunan, artinya seiring penambahan nomor jari-jari atomnya semakin memendek, fenomena penurunan jari-jari atom dalam lantanida inilah dinamakan kontraksi lantanida. Kontraksi inilah bertanggungjawab terhadap pemisahan lantanida menjadi dua golongan yakni lantanida golongan ringan dan lantanida golongan berat yang mengandung banyak mineral. Selain itu, kontraksi ini juga bertanggungjawab terhadap kekerasan, kerapatan dan titik lebur unsur-unsur lantanida. Artinya penurunan jari-ajari atom menjadikan dirinya lebih rapat, padat dan titik leburnya tinggi. Berdasarkan hal tersebut nampaknya Lutesium yang paling rapat, padat dan lebih tinggi titik leburnya dibandingkan unsur-unsur lain di golongan lantanida karena Lutesium memiliki jari-jari atomnya yang terpendek dibandingkan yang lainnya

Aktinida
Lima belas unsur dari aktinium, Ac, sampai lawrensium, Lr, disebut dengan aktinoid. Simbol umum untuk unsur-unsur ini adalah An. Semua unsur aktinoid bersifat radioaktif dan sangat beracun. Di alam aktinoid yang ada dalam jumlah yang cukup adalah torium (Th), protaktinium (Pa), dan uranium (U). Unsur-unsur tadi diisolasi dari bijihnya dan digunakan dalam berbagai aplikasi. Logam plutonium (Pu) diproduksi dalam jumlah besar dan efisiensi ekonomisnya dan keamanan penggunaannya sebagai bahan bakar reaktor nuklir dan reaktor pembiak saat ini sedang banyak dipelajari. Untuk unsur yang lebih berat dari amerisium (Am), karena jumlah yang dapat diisolasi sangat kecil dan waktu paruhnya sangat pendek, studi sifat-sifat kimia unsur-unsur ini sangat terbatas.
Walaupun aktinoid mirip dengan lantanoid dalam pengisian elektron 5fnya, sifat kimianya tidak seragam dan masing-masing mempunyai sifat yang unik. Promosi elektron dari 5f-6d memerlukan energi yang besar dan contoh senyawa dengan ligan asam π telah dikenal dan orbital 5f, 6d, 7s dan 7p berpartisipasi dalam ikatan. Senyawa trivalen aktinoid umum dijumpai tetapi bilangan oksidasi selain tiga bukan tidak umum. Khususnya torium, protaktinium, uranium and neptunium yang cenderung berbilangan oksidasi +4 atau bilangan oksidasi yang lebih tinggi. Karena keradioaktifannya rendah, torium dan uranium yang ditemukan sebagai mineral dapat ditangani dengan legal di laboratorium biasa. Senyawa seperti ThO2, ThCl4, UO2, UCl3, UCl4, UCl6, UF6, dsb bermanfaat untuk berbagai kegunaan. Khususnya UF6, yang mudah menyublim dan merupakan gas yang cocok untuk difusi gas dan melalui proses sentrifugasi gas dalam preparasi 235U. Torium adalah unsur yang oksofilik mirip dengan lantanoid.

Sifat paramanetik pada logam

Posted on Diposting oleh Teknik industri

Magnetisasi, M, (momen magnet per satuan  volume) suatu sampel dalam medan magnet, H, berbanding lurus dengan besarnya H, dan tetapan perbandingannya adalah, χ, yang bergantung pada sampel.

pers. M
χ disebut dengan suseptibilitas volume dan hasil kali  χ dan volume molar sampel Vm disebut dengan susceptibilitas molar χ. Dinyatakan dalam persamaan menjadi:
persamaan
Semua zat memiliki sifat diamagnetik, dan selain diamagnetisme, zat dengan elektron tidak berpasangan juga menunjukkan sifat paramagnetisme, besar sifat paramagnetisme sekitar 100 kali lebih besar daripada sifat diamagnetisme.  Hukum Curie menunjukkan bahwa paramagnetisme berbanding terbalik dengan suhu:
hukum curie
T adalah temperatur mutlak dan A dan C adalah konstanta. Dalam metoda Gouy atau Faraday, momen magnet dihitung dari perubahan berat sampel bila digantungkan dalam pengaruh medan magnet. Selain metoda ini, metoda yang lebih sensitif adalah  SQUID (superconducting quantum interference device) yang telah banyak digunakan untuk melakukan pengukuran sifat magnet.
Paramagnetisme diinduksi oleh momen magnet permanen elektron tak berpasangan dalam molekul dan suseptibilitas molarnya berbanding lurus dengan momentum sudut spin elektron. Paramagnetisme kompleks logam transisi blok d  yang memiliki elektron tak berpasangan dengan bilangan kuantum spin 1/2, dan setengah jumlah elektron tak berpasangan adalah bilangan kuantum spin total S. Oleh karena itu, momen magnet hanya berdasarkan spin secara teori dapat diturunkan mengikuti persamaan:
spin
Banyak kompleks logam 3d menunjukkan kecocokan yang baik antara momen magnet yang diukur dengan neraca magnetik dan yang dihasilkan dari persamaan di atas. Hubungan antara jumlah elektron yang tak berpasangan dan suseptibilitas magnet kompleks diberikan di Tabel 6.3.
Karena kecocokan ini dimungkinkan untuk menghitung jumlah elektron yang tidak berpasangan dari hasil pengukuran magnetiknya. Misalnya, misalnya kompleks Fe3+ d5 dengan momen magnet sekitar 1.7 µB adalah kompleks spin rendah dengan satu elektron tak berpasangan, tetapi Fe3+ d5 dengan momen magnet sekitar 5.9  µB adalah kompleks spin tinggi dengan 5 elektron tak berpasangan.
tabel 6.3
Walaupun, momen magnetik yang terukur tidak lagi cocok dengan nilai spin saja bila kontribusi momentum sudut pada momen magnet total semakin besar. Khususnya dalam kompleks logam 5d, perbedaan antara yang diukur dan dihitung semakin besar.
Beberapa material padatan paramagnetik menjadi  feromagnetik pada temperatur rendah membentuk domain magnetik, yang di dalamnya ribuan spin elektron paralel satu sama lain. Suhu transisi paramagnetik-feromagnetik disebut suhu Curie. Bila spin tersusun antiparalel satu sama lain, bahan menjadi antiferomagnetik, dan suhu transisi paramagnetik-anti-feromagnetik disebut suhu Neel. Bahan menjadi ferimagnetik bila spinnya tidak tepat saling menghilangkan, sehingga masih ada kemagnetannya. Kini, usaha untuk membuat ion logam paramagnetik tersusun untuk menginduksi interaksi feromagnetik antar spin-spinnya. Efek ini tidak mungkin dalam kompleks monointi

Struktur Padatan Kristal

Posted on Diposting oleh Teknik industri

a. Susunan terjejal

Banyak senyawa, khususnya kristal logam dan molekular mempunyai sifat umum yang memaksimalkan kerapatannya dengan menyusun partikel-partiklenya serapat mungkin. Sruktur kristal semacam ini disebut dengan struktur terjejal.
Sebagai contoh, perhatikan susunan terjejal kristal logam yang terdiri atas atom sferik (bola). Bola-bola ini disusun dalam lapisan. Lapisan pertama harus disusun seperti gambar (a) untuk mendapatkan susunan terjejal. Setiap bola di lapisan kedua menempati lubang yang dibentuk oleh tiga bola di lapisan pertama. Ini adalah cara yang paling efisien untuk menggunakan ruang yang tersedia (Gambar (b)). Ada dua cara untuk meletakkan lapisan ketiganya. Salah satunya adalah dengan meletakkan langsung di atas bola lapisan pertama (Gambar (c)), dan cara yang kedua adalah dengan meletakkannya di atas lubang lapisan kedua (Gambar (d)). Untuk mudahnya, cara pertama disebut dengan susunan abab, dan sruktur yang dihasilkan disebut dengan heksagonal terjejal. Cara yang kedua disebut dengan susunan abc dan sruktur yang dihasilkan disebut dengan kubus terjejal.
Susunan terjejal apapun akan memiliki sifat umum: (1) bola-bola itu akan menempati. 74% ruang yang tersedia; (2) setiap bola dikelilingi oleh 12 bola tetangganya; (3) enam bola dari 12 ada di lapis yang sama dan tiga di lapis atasnya dan tiga sisanya dari lapis di bawahnya. Jumlah bola yang beresentuhan dengan bola yang menjadi acuan disebut dengan bilangan koordinasi. Untuk struktur terjejal, bilangan koordinasi adalah 12, yang merupakan bilangan koordinasi maksimum. Dalam kasus ini, empat partikel dimasukkan dalam satu sel satuan.
Gambar  Struktur terjejal
(a) Satu lapisan khas. Setiap bola dikelilingi oleh 12 bola lain. (b) Lapisan kedua yang mirip dengan lapisan pertama. Setiap bola akan menempati lubang yang terbentuk oleh tiga bola di lapis pertama. (c) setiap bola di lapisan ketiga akan terletak persis di atas lapisan pertama (susunan aba). (d) setiap bola di lapisan ketiga terletak di atas lubang lapisan pertama yang tidak digunaka oleh lapisan kedua (susunan abc).


Perak mengkristal dalam susunan kubus terjejal. Bila kristalnya dipotong seperti ditunjukkan di Gambar dibawah, satu bola akan terletak di pusat setiap muka kubus. Karena satu bola (satu atom) terletak di setiap pusat muka kubus, maka kisi ini disebut dengan kisi berpusat muka.
Gambar  Kisi kubus berpusat muka
Dalam kasus ini, hubungan antara r, jari-jari bola dan d,
panjang sel satuan, dapat ditentukan dengan teorema Pythagoras.
teorema Pythagoras, d2 + d2 = (4r)2 Jadi : d = r√8 = 0,144√8 = 0,407 nm. Jumlah atom perak dalam satu sel satuan dapat diperoleh dari Gambar 8.5. Terlihat terdapat enam separuh bola dan delapan 1/8 bola. Sehingga totalnya ada 4 bola per sel satuan. Massa atom perak adalah m = 107,9 (g mol-1) / 6,022 x 1023 (atom mol-1) = 1,792 x 10-22 (g atom-1).
Karena kerapatan adalah (massa/volume), maka kerapatan perak dAg = [4.(atom) x 1,792 x 10–22 (g .atom1)]/(0,407 x 10-7)3 (cm3) = 10,63 (g.cm-3). Nilai yang didapat dari percobaan adalah 10,5 (g.cm-3) pada temperatur 20 °C.

b. Kubus berpusat badan

Beberapa logam , seperti logam alkali, mengkristal dalam kisi kubus berpusat badan, yang mengandung bola yang terletak di pusat kubus dan di sudut-sudut kubus sel satuan sebagaimana diperlihatkan di Gambar dibawah. Cara penyusunan ini disebut dengan kisi kubus berusat badan.

c. Analisis kristalografi sinar-X

Teknik analisis kristalografi sinar-X pertama dikenalkan di awal abad 20, dan sejak itu telah digunakan dengan meluas untuk penentuan struktur berbagai senyawa. Teknik ini dengan sempurna telah menyelesaikan berbagai masalah yang sebelumnya tidak dapat diselesaikan. Tahap awal dicapai oleh William Henry Bragg (1862-1942), sang ayah, dan William Laurence Bragg (1890-1971), anaknya, yang menentukan struktur garam dan intan.
Hingga beberapa tahun terakhir, analisis kristalografi sinar-X hanya dilakukan para spesialis, yakni kristalografer, apapun molekul targetnya. Sungguh, pengukuran dan pemrosesan data yang diperlukan memerlukan pengetahuan dan pengalaman yang banyak. Namiun kini, berkat perkembangan yang cepat dan banyak dalam bidang hardware maupun software kristalografi sinar-X, pengukuran kristalografi sinar-X telah menjadi mungkin dilakukan dengan training yang lebih singkat. Kini, bahkan kimiawan sintesis yang minat utamanya sintesis dan melakukan analisis kristalografi sinar-X sendiri. Akibatnya molekul target yang dipelajari oleh para spesialis menjadi semakin rumit, dan bahkan struktur protein kini dapat dielusidasi bila massa molekulnya tidak terlalu besar. Kini pengetahuan tentang analisis kristalografi diperlukan semua kimiawan selain NMR (Bab 13.3).
Difraksi cahaya terjadi dalam zat bila jarak antar partikel-partikelnya yang tersusun teratur dan panjang gelombang cahaya yang digunakan sebanding. Gelombang terdifraksi akan saling menguatkan bila gelombangnya sefasa, tetapi akan saling meniadakan bila tidak sefasa. Bila kristal dikenai sinar-X monokromatis, akan diperoleh pola difraksi. Pola difraksi ini bergantung pada jarak antar titik kisi yang menentukan apakah gelombang akan saling menguatkan atau meniadakan.
Gambar  Kondisi difraksi Bragg.
Difraksi sinar- X oleh atom yang terletak di dua lapis kristal. Bila selisih lintasan optis, xy + yz = 2dsinθ, sama dengan kelipatan bulat panjang gelombang, gelombang tersebut akan saling menguatkan.
Andaikan panjang gelombang sinar-X adalah λ (Gambar diatas). Bila selisih antara lintasan optik sinar-X yang direfleksikan oleh atom di lapisan pertama dan oleh atom yang ada di lapisan kedua adalah 2dsinθ, gelombang-gelombang itu akan saling menguatkan dan menghasilkan pola difraksi. Intensitas pola difraksi akan memberikan maksimum bila:
nλ = 2dsinθ … (1)
Persamaan ini disebut dengan kondisi Bragg.
Kondisi Bragg dapat diterapkan untuk dua tujuan. Bila jarak antar atom diketahui, panjang gelombang sinar-X dapat ditentukan dengan mengukur sudut difraksi. Moseley menggunakan metoda ini ketika ia menentukan panjang gelombang sinar X berbagai unsur. Di pihak lain, bila panjang gelombang sinar-X diketahui, jarak antar atom dapat ditentikan dengan mengukur sudut difraksi. Prinsip inilah dasar analisis kristalografi sinar-X.

TEORI PADA SENYAWA KOMPLEKS

Posted on Diposting oleh Teknik industri

Dalam ilmu kimia, kompleks atau senyawa koordinasi  molekul  terbentuk dari penggabungan ligan dan ion logam

1.     Kompleks bujur sangkar
Kompleks dengan empat ligan dalam bidang yang mengandung atom logam di pusatnya disebut kompleks bujur sangkar. Dengan menempatkan enam ligan di sumbu koordinat Cartesian, kemudian dua ligan perlahan-lahan digeser dari atom pusat dan akhirnya hanya empat ligan yang terikat terletak di bidang xy.Interaksi dua ligan di koordinat z dengan orbital dz2, dxz, dan dyz menjadi lebih kecil dan tingkat energinya menjadi lebih rendah. Di pihak lain empat ligan sisanya mendekati atom logam dan tingkat energi dx2-y2 dan dxy naik akibat pergeseran dua ligan. Hal ini menghasilkan urutan tingkat energinya menjadi dxz, dyz < dz2 < dxy << dx2-y2 (Gambar 6.7). Kompleks Rh+, Ir+, Pd2+, Pt2+, dan Au3+ dengan konfigurasi d8 cenderung membentuk struktur bujur sangkar sebab 8 elektron menempati orbital terendah dan orbital tertinggi dx2-y2 kosong.
 
1.     Medan kristal oktahedron
Jika pemisahan orbital-d pada medan oktahedron adalan Δoct, tiga orbital t2g distabilkan relatif terhadap sentroid sebesar 2/5 Δoct, dan orbital-orbital eg didestabilkan sebesar 3/5 Δoct. Stabilisasi medan kristal dapat digunakan dalam menjelaskan geometri kompleks logam transisi. Alasan mengapa banyak kompleks d8 memiliki geometri datar persegi adalah karena banyaknya stabilisasi medan kristal yang dihasilkan struktur geometri ini dengan jumlah elektron 8.

2.     Kompleks tetrahedral
Kompleks tetrahedral memiliki empat ligan di sudut tetrahedral di sekitar atom pusat. Obital e (dx2-y2, dz2) terletak jauh dari ligan dan orbital t2 (dxy, dyz, dxz) lebih dekat ke ligan. Akibatnya, tolakan elektronik lebih besar untuk orbital t2, yang didestabilkan relatif terhadap orbital e. Medan ligan yang dihasilkan oleh empat ligan membelah orbital d yang terdegenerasi menjadi dua set orbital yang terdegenarsi rangkap dua  eg dan yang terdegenarsi rangkap tiga tg. Set t2 memiliki energi +2/5 ∆t dan set e memiliki enegi -3/5 ∆t dengan pembelahan ligan dinyatakan sebagai ∆t. Karena jumlah ligannya hanya 4/6 = 2/3 dibandingkan jumlah ligan dalam kompleks oktahedral, dan tumpangtindih ligannya menjadi lebih kecil maka pembelahan ligan ∆t sekitar separuh ∆o. Hanya konfigurasi elektron spin tinggi yang dikenal dalam kompleks tetrahedral. Energi pembelahan ligan dihitung dengan metoda di atas sebagaimana diperlihatkan dalam Tabel dibawah ini:
1.     Efek Jahn-Teller
Distorsi molekuler  karena adanya degradasi elektronik  ground state. Untuk entitas molekul  linear -non geometri yang diuraikan oleh  simetri memiliki degradasi tereduksi ,setidaknya satu getaran non- simetris total yang membuat elektronik terdegradasi  tidak stabil pada saat  geometri ini. Inti yang mengungsi ke posisi simetri rendah ekuilibrium baru menyebabkan pemisahan suatu dari degradasi ground state.Bila orbital molekul poliatomik nonlinear terdegenerasi, degenerasinya akan dihilangkan dengan mendistorsikan molekulnya membentuk simetri yang lebih rendah dan akhirnya energinya lebih rendah. Inilah yang dikenal dengan efek Jahn-Teller dan contoh khasnya adalah distorsi tetragonal dari kompleks oktahedral kompleks Cu2+ heksakoordinat.
Ion Cu2+ memiliki konfigurasi d9 dan orbital eg dalam struktur oktahedral diisi oleh tiga elektron. Bila orbital eg membelah dan dua elektron menempati orbital yang lebih rendah dan satu elektron di orbital yang lebih atas, sistemnya akan mendapatkan energi sebesar separuh perbedaan energi, δ, dari pembelahan orbital. Oleh karena itu distorsi tetragonal dalam sumbu z disukai.
n  Bila orbital molekul poliatomik non linear terdegenerasi, generasi dihilangkan , dan mendistorsi molekul membentuk simetri lebih rendah. Contoh: Kompleks oktahedral Cu2+ mengalami  distorsi tetragonal.
n  Cu 2+  =  d9 , eg diisi  3e- , eg membelah, 2e- menempati orbital lebih rendah , 1e- menempati orbital lebih atas , Sistemnya akan mendapat energi = ½ D 


1.     CFSE
Energi stabilisasi medan kristal (CFSE), adalah stabilitas yang dihasilkan dari penempatan ion logam pada medan kristak yang dibentuk oleh sekelompok ligan-ligan. Ia muncul karena ketika orbital-d terpisah pada medan ligan, beberapa dari orbital itu akan memiliki energi yang lebih rendah. Sebagai contoh, pada kasus oktahedron, kelompok orbital t2g memiliki energi yang lebih rendah dari energi orbital pada sentroid. Sehingga, jika terdapat sembarang elektron yang menempati orbital-orbital ini, ion logam akan menjadi lebih stabil pada medan ligan relatif terhadap sentroid dengan nilai yang dikenal sebagai CFSE. Sebaliknya, orbital-orbital eg (pada kasus oktaheral) memiliki energi yang lebih tinggi daripada sentroid, sehingga menempatkan elektron pada orbital tersebut menurunkan CFSE.


2.     Warna kompleks logam transisi
Warna-warna cerah yang terlihat pada kebanyakan senyawa koordinasi dapat dijelaskan dengan teori medan kristal ini. Jika orbital-d dari sebuah kompleks berpisah menjadi dua kelompok seperti yang dijelaskan di atas, maka ketika molekul tersebut menyerap foton dari cahaya tampak, satu atau lebih elektron yang berada dalam orbital tersebut akan meloncat dari orbital-d yang berenergi lebih rendah ke orbital-d yang berenergi lebih tinggi, menghasilkan keadaam atom yang tereksitasi. Perbedaan energi antara atom yang berada dalam keadaan dasar dengan yang berada dalam keadaan tereksitasi sama dengan energi foton yang diserap dan berbanding terbalik dengan gelombang cahaya. Karena hanya gelombang-gelombang cahaya (λ) tertentu saja yang dapat diserap (gelombang yang memiliki energi sama dengan energi eksitasi), senyawa-senyawa tersebut akan memperlihatkan warna komplementer (gelombang cahaya yang tidak terserap).
Ligan-ligan yang berbeda akan menghasilkan medan kristal yang energinya berbeda-beda pula, sehingga kita bisa melihat warna-warna yang bervariasi. Untuk sebuah ion logam, medan ligan yang lebih lemah akan membentuk kompleks yang Δ-nya bernilai rendah, sehingga akan menyerap cahaya dengan λ yang lebih panjang dan merendahkan frekuensi ν. Sebaliknya medan ligan yang lebih kuat akan menghasilkan Δ yang lebih besar, menyerap λ yang lebih pendek, dan meningkatkan ν. Sangtalah jarang energi foton yang terserap akan sama persis dengan perbedaan energi Δ; terdapat beberapa faktor-faktor lain seperti tolakan elektron dan efek Jahn-Teller yang akan mempengaruhi perbedaan energi antara keadaan dasar dengan keadaan tereksitasi.
Warna-warna yang terlihat
Roda warna mendemonstrasikan warna senyawa yang akan terlihat jika ia hanya menyerap satu gelombang cahaya. Sebagai contoh, jika senyawa tersebut menyerap warna merah, maka ia akan tampak hijau.
λ diserap vs warna terpantau:
400nm Ungu diserap, Hijau-kuning terpantau (λ 560nm); 450nm Blue diserap, Kuning terpantau (λ 600nm); 490nm Biru-hijau diserap, Merah terpantau (λ 620nm); 570nm Kuning-hijau diserap, Ungu terpantau (λ 410nm); 580nm Kuning diserap, Biru tua terpantau (λ 430nm); 600nm Jingga diserap, Biru terpantau (λ 450nm); 650nm Merah diserap, Hijau terpantau (λ 520nm).

Persamaan Nernst

Posted on Diposting oleh Teknik industri

Persamaan Nernst
Potensial sel non standar dapat dihitung dengan persamaan Nernst sebagai berikut
Eo adalah potensial elektroda normal (potensial elektroda semua zat dalam reaksi sel dalam keadaan standar), n jumlah elektron yang terlibat dalam reaksi, sedangkan oks dan red masing-masing menyatakan konsentrasi partikel hasil oksidasi dan konsentrasi partikel hasil reduksi.
Sel Konsentrasi
Pada sel konsentrasi digunakan dua elektrode yang sama namun konsentrasi larutannya yang berbeda. Elektrode dalam larutan pekat merupakan katode (tempat terjadinya reaksi reduksi) sedangkan elektrode dalam larutan encer merupakan anode (tempat terjadinya reaksi oksidasi). Misalnya untuk
Zn | Zn2+(10-3 M) || Zn 2+(10-1 M) | Zn
Maka untuk reaksi di atas yang mengalami reduksi adalah Zn 2+(10-1 M) karena lebih pekat daripada Zn2+(10-3 M) sedangkan Zn yang mengalami oksidasi. Untuk penggunaan rumus sama dengan persamaan Nernst, yaitu